<<1011121314
66.

The number of even numbers greater than 1000000 that can be formed using all the digits 1,2,0,2,4,2 and 4 is 


A) 120

B) 240

C) 310

D) 480



67.

If the cubic equation $x^{3}-a x^{2}+ax-1$=0 is identical with the cubic equation  whose roots  are the squares of the roots  of the given cubic equation , then the non-zero real value of 'a'  is 


A) $\frac{1}{2}$

B) 2

C) 3

D) $\frac{7}{2}$



68.

$i^{2}+i^{3}+.......+i^{4000}$=


A) 1

B) 0

C) i

D) -i



69.

Let AX=D be a system of three  linear  non-homogeneous equations, If |A|  =0 and rank(A) =rank ([AD])= $\alpha$  , then 


A) AX=D will have infinite number of solutions when $\alpha$=3

B) AX=D will have unique solution when $\alpha$ &lt;3

C) AX=D will have infinite number of solutions when $\alpha$ &lt; 3

D) AX=D will have no solution when $\alpha$ &lt;3



70.

Assertion (A)    if |x|<1, then   

$\sum_{m=0}^{\infty}(-1)^{n} x^{n+1}=\frac{x}{x+1}$

Reason  (R)    if |x|<1, then $(1+x)^{-1}$ = $ 1-x+x^{2}-x^{3}$+.....

Which one of the following is true?


A) (A) and (R) are true , (R) is correct explanation of (A)

B) (A) and (R) are true but (R) is not a correct explanation of (A)

C) (A) is true , but (R) is false

D) (A) is false , but (R) is true



<<1011121314